

Page | 1

APL+Win Version 14.2.06 Beta

Copyright (c) 2014 APLNow LLC.

All Rights Reserved

Nov 24, 2014

This document contains version history information for this APL+Win 14.2.06 Beta. Please report any

problems or comments pertaining to this beta to support@apl2000.com.

Note: This beta will expire on or about Dec. 31, 2014.

Enhancements

1. Colon primitive (:)

Description:

A colon prefix followed by a space (colon-space) at the beginning of a statement in a user defined

function will suppress the output on any line of execution including a :THEN expression in Inline Control

Structures.

2. Sink primitive (←)

Description:

Suppress the output from any line of execution in immediate execution (session) and user defined

function when executed monadically.

Syntax:

 ← expression

where expression is any valid APL expression that returns a value.

Example:

 ← 2 3⍴⍳6

⍝ no output displayed

mailto:support@apl2000.com

Page | 2

3. ⎕rng - Random Number Generator

Purpose:
This workspace-related system variable sets the type of the pseudo-random number generator
to be used by the system.

Syntax: result

 number

Domain:

Integer in []. In a clear workspace, the default value is which corresponds to the historical
method used by APL+Win.

Effect:
The system uses the value of to select the desired random number generators to be used
by the roll (monadic) and deal (dyadic) primitive functions.

Changing the value of to a value different than its previous value will cause the system to

reset and to their default values.

Value Range of Type of RNG Default Value of Default Value of

 Multiplicative
Linear Congruential
with Multiplier set
to

 N/A

 Mersenne Twsister
(-bit)

N/A

 Multiplicative

Linear Congruential
with Multiplier set
to

N/A

 Subtract with Carry

(-bit)

N/A

Examples:

Generate three random numbers from to .

Page | 3

Select a different random number generator.

Generate three random numbers from to .

Pseudo-Random Number Algorithms
The APL+Win roll (monadic ?, e.g. ?100) and deal (dyadic ?, e.g. 10?100) functions employ pseudo-

random number generation algorithms so that programmers can simulate random events or create

cryptographic keys. These algorithms are fully determined by their seed value so that the sequence

generated can be repeated by using the same seed value. The repeatable property of these algorithms

is useful for testing applications involving the roll or deal functions, however this repeatable property is

what makes them pseudo-random. The period of a pseudo-random number algorithm is the maximum,

among all possible seed values, length of a sequence of values generated by the algorithm which is non-

repeating.

Prior to APL+Win v14.3, the pseudo-random number algorithm inherently supported was the ‘linear

congruental’ algorithm with linear constant term set to zero. Starting with APL+Win v14.3, additional

pseudo-random number algorithms are inherently supported and may be selected by the APL+Win

programmer, with the potential for additional algorithms to be added in the future.

Pseudo-random number generator algorithms are analyzed on the following bases:

 Period ‘length’ for specific seed values

 Correlation among successively generated values

 Distribution of generated values among the possible values

 Mathematical ‘complexity’ resulting in processing time variation

The underlying pseudo-random number generator algorithm is used to obtain a pseudo-random number

in a specified range. This value is mapped to the integer range space of the APL+Win roll function. For

example the range space of the pseudo-random number generator may be values in [0, 1], but the range

space of the APL+Win roll function is programmer determined, e.g. For ?10 the range space is [1, 10] in

index origin 1.

A pseudo-random number generator seed may itself be generated by a seeding generator. This

technique is deemed to ‘inject entropy’ into the resulting sequence of pseudo random numbers. The

seed data may be a single unsigned integer, e.g. Linear Congruential, or a sequence of integer values

Page | 4

used by a seed generator to produce a seed vector for the pseudo random number generator, e.g. Seed

Sequence. Refer to http://www.cplusplus.com/reference/random/seed_seq/.

Mersenne Twister

Mersenne Twister algorithm provides fast generation of high-quality pseudorandom integers. The

specific variant of Mersenne Twister implemented in APL+Win is ‘MT19937’. It is based on the

Mersenne prime 219937-1 and produces a sequence of 32-bit numbers with a state size of 19937 bits. Its

predefined parameters are:

 32: word size

 624: state size

 397: shift size

 31: mask bits

 0x9908b0df: xor mask

 11:tempering shift parameter u

 0xffffffff: tempering bitmask parameter d

 7: tempering shift parameter s

 0x9d2c5680: tempering bitmask parameter b

 15: tempering shift parameter t

 0xefc60000: tempering bitmask parameter c

 18: tempering shift parameter l

 1812433253: initialization multiplier

Range of values generated: [0, 232 – 1]

Default Seed: 5489

Initial State: 3499211612

More information:

 http://en.wikipedia.org/wiki/Mersenne_twister

 http://www.cplusplus.com/reference/random/mt19937

Linear Congruential

Linear congruential algorithm yields a sequence of numbers computed with a discontinuous piecewise

linear equation. The pre-existing version of this algorithm in APL+Win uses zero as the linear constant

term. The specific variant of Linear Congruential implemented in APL+Win is ‘MINSTD_RAND’. Its

predefined parameters are:

 48271: the multiplier

http://www.cplusplus.com/reference/random/seed_seq/
http://en.wikipedia.org/wiki/Mersenne_twister
http://www.cplusplus.com/reference/random/mt19937

Page | 5

 0: the increment

 2147483647:the modulus

Range of values generated: [Min: 1, (231 – 1) – 1]]

Default Seed: 1

Initial State: 48271

More information:

 http://en.wikipedia.org/wiki/Linear_congruential_generator

 http://www.cplusplus.com/reference/random/minstd_rand.

Subtract with Carry

Subtract with carry is a lagged Fibonacci algorithm with a state sequence of integer elements, plus one

carry value. This algorithm is a generalization of the L'Ecuyer RNG (University of Montreal). The specific

version of Subtract with Carry implemented in APL+Win is ‘RANLUX24_BASE’ which produces 24-bit

numbers. Its predefined parameters are

 24: number of bit in each word in the state sequence

 10: number of elements between advances

 24: value that determines the degree of recurrence in the generated series

Range of values generated: [0, 224 – 1]

Default Seed: 19780503

Initial State: 15039276

More information:

 http://en.wikipedia.org/wiki/Subtract_with_carry

 http://www.cplusplus.com/reference/random/ranlux24_base

4. ⎕rlx - Random Link Extended

Purpose:
This workspace-related system variable sets or gets the discard value (or advance internal state), seed
value (or random link), and additional optional value(s) used by a seed sequence object in seeding the
RNGs. It is applicable only when

Syntax: result
 vector of numbers with a minimum of two elements

Domain:

The following table specifies the ranges of values that can be used to seed the respective RNGs.

Type of RNG Min Max

 ().

http://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.cplusplus.com/reference/random/minstd_rand
http://en.wikipedia.org/wiki/Subtract_with_carry
http://www.cplusplus.com/reference/random/ranlux24_base

Page | 6

 ()

 ().

Effect:

The system uses the value of to compute the result of the roll (monadic) and deal (dyadic)
primitive functions when . As the system generates each pseudo-random number in a
sequence, it uses the seed data in the computation and updates as the seed for the next
value in the sequence.

 consists of at least elements, the first being the discard value and the remaining values being the

seed values.

The discard value advances the internal states of the RNG as if the new random numbers are being
generated. By default the discard value is set to . For some RNSs increasing the discard value will avoid
using the initial values of the sequence which may not be reasonably distributed.

 The seed, if contains nonnegative value, will be used to seed the RNG in subsequent random number

generation.

If the first element of the seed is , the remaining elements of , if any, will be used as a seed

generator sequence to produce a series of unsigned integers with significant bits to seed the RNG in
subsequent random number generation.

Examples:

Select the pseudo random number generator corresponding to ‘’:

Generate three random numbers in [,] (index origin):

Use discard value of and the vector to set up a seed generator sequence value:

Generate three random numbers in [,] (index origin):

If is not modified by the APL+Win programmer, will be used in subsequent random

number generation.

Page | 7

5. The APLW.WS ActiveX Server object now supports being instantiated by a 32-bit non-APL+Win

client application.

Note: that this enhancement facilitated renaming the XStart method to XInit.

Observe the following behaviors when starting the new APLW.WS server from a non-APL+Win client:

a. The default Workspace (if no Workspace specified in XInit or XInit invoked implicitly) will be "" (no

default workspace).

b. The default Argument (if no Argument specified in XInit or XInit invoked implicitly) will be "".

c. The default Directory (if no Directory specified in XInit or XInit invoked implicitly) will be the current

directory where the aplwCo.dll.

d. The default ExePath (if no ExePath specified in XInit or XInit invoked implicitly) will be based on the

name of the aplwCo.dll.

Page | 8

BUG FIX

The display or formatting of a deeply nested array could cause APL+Win to crash unexpectedly instead

of reporting a LIMIT ERROR. This was found to occur when the product of the elements in the number

of rows and cols in the nested array exceeded the maximum number of elements supported in a 32-bit

signed integer.

